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1. Summary

In this document we report on activities related to the project “Anisoplanatic Imaging through 

Turbulence”, grant number FA9550-14-1-0244. The activities in Year 2 have followed two main research 

directions: 

- The development of a new point-spread function (PSF) reconstruction approach which aims at 

extracting, from multi-frame observations, a number of PSFs at several locations within an image 

of an arbitrary object (without point sources) (Section 3.1). 

- The development of a marginal blind deconvolution estimator, combined with constraints on the 

observed object such as positivity, for identification of long-exposure adaptive optics PSFs. This 

approach can also be extended to the anisoplanatic case by its application in different locations of 

the field of view as a first building block of a global shift-variant image restoration approach 

(Section 3.2). 

Both approaches are complementary to each other, e.g., from the first approach it is possible to extract a 

model for the object’s power spectral density that can be used to complete the parameters to be used in the 

second approach.  

2. Introduction

The performance of optical systems is degraded by atmospheric turbulence when observing vertically (e.g. 

astronomy) or horizontally (e.g. surveillance, military reconnaissance). This degradation can be alleviated 

in software (real-time de-blurring or post-processing) or hardware (adaptive optics – AO). Tremendous 

progress has been achieved in this area: in astronomy almost every major observatory is now equipped 

with first-generation AO systems and some second-generation systems are currently coming online. High-

resolution imaging of satellites is now a routine task at the Air Force Maui Optical and Supercomputing 

(AMOS) observatory thanks to a combination of AO and post-processing. The technology and associated 

image processing techniques have been successfully transferred to commercial markets, especially in the 

field of ophthalmic imaging. 

One problem still remains: Adaptive optics systems are generally only capable of correcting very small 

fields of view. In single-conjugated AO systems, i.e., ones that measure and correct atmospheric 

distortions in one direction, with a single deformable mirror, the usable field-of-view is determined by the 

so-called isoplanatic angle (Figure 1). This angle describes the field-of-view in which turbulence-induced 

aberrations could be considered constant and therefore correctable with a single device. In other words, 

given a certain correction direction, isoplanatic angle gives the maximum angular separation from this 

direction at which reasonably good correction can be expected. In conventional AO systems, the 

correctable field-of-view has a size of the order of isoplanatic angle. 

In theory, the problem of wide-field imaging can be solved by multi-conjugate AO. Such systems, already 

deployed successfully at a handful of astronomical observatories, correct aberrations resulting from 

propagations over distinct paths using a number of wavefront sensors and corresponding deformable 

mirrors. These systems are complex, bulky, one-off instruments. In astronomical imaging, two-three 

wavefront sensors and deformable mirrors already increase the field of view to enable new science. 

DISTRIBUTION A. Approved for public release: distribution unlimited.
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Fig. 1. Illustration of the problem of anisoplanatism in imaging through turbulence with adaptive optics, 

vertical-path scenario. Left: when strong atmospheric layer is located close to the telescope pupil then 

there exists a large overlap in significant wavefront aberrations between light coming from the object of 

interest and the guide star (reference for AO). Right: when the layer of significant turbulence is located 

further up then the overlap between the wavefronts coming from the two directions is reduced and 

subsequently the correction applied to the deformable mirror is valid only for the reference star and not 

for the target. 

This solution is not applicable for at least two areas of interest: For ground-level surveillance, where the 

field of view could extend over hundreds of isoplanatic patches because of the strength of turbulence 

along horizontal paths near the ground, multi-conjugate AO would have to consist of hundreds of 

wavefront sensors and corresponding deformable mirrors. This poses an enormous technical problem and 

the idea of multi-conjugate AO in this context is currently not being followed. Also, in air-to-ground, 

“looking-down” scenario, the ratio of sensor aperture to the coherence length of the atmosphere is around 

unity (as opposed to tens or hundreds in imaging from the ground) but isoplanatic angles are usually very 

small because optical aberrations are located far away from the imaging pupil. 

The hardware solution to the problem of anisoplanatism, i.e. multi-conjugate AO, is very expensive. 

Therefore, in this project we follow two software approaches. 

Fig. 2. Simulated data showing a stellar field imaged with single-conjugate AO (for more details on the 

simulation see [1]). Left: original data, false color and stretched scale. Right: result of image 

reconstruction with a single PSF corresponding to the guide star, ignoring anisoplanatism. It can be seen 

how image quality degrades when moving away from the guide star. 

Data from single-conjugate AO systems are difficult to post-process (deconvolve) because of the spatially-

variant blur (Figure 2). This means that each point in an image is blurred by a slightly different point-
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spread function (PSF). On the other hand, almost all deconvolution algorithms rely on PSF being constant 

in the field of view. This is the shift-invariant paradigm which does not lead to optimal results (cf. right 

panel of Figure 2). In the following sections we describe two solutions which we followed to tackle this 

problem. 

3. Methods, Assumptions, and Procedures

3.1 PSF reconstruction directly from target data 

In the first year of the project work was performed on reformulation of imaging problem from traditional 

shift-invariant into the shift-variant case, development of simulations of anisoplanatic imagery and 

anisoplanatic image reconstruction algorithms. Gains have been made on all three fronts but the 

underlying assumption was that the algorithms have access to knowledge about the form of the PSF at 

every point in an image. In the second year, efforts were devoted to finding an approach that could reveal 

these PSFs even for objects without features such as edges or bright points. As mentioned in the grant 

proposal, building on our previous work on object-cancelling transformations [2] we hoped to find new 

transformations which would allow to reduce the problem to two equations with two unknowns, giving 

directly the PSF. Ultimately, this proved possible and good results have been obtained (see Section 4.1). 

The imaging equation for a true object )(x


o  convolved with a PSF )(x


h , giving the recorded image )(x


i

is: 

)()()( xxx


hoi   (1) 

where ⨂ denotes the convolution operator and the symbol x


 corresponds to two-dimensional focal-plane 

coordinate. Equation (1), transformed into Fourier domain, squared and averaged over M images, 
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If the object is static during the observations then its power spectrum cancels out and we are left only with 

the part involving random aberrations. Note that all static terms disappear from the result, i.e. also 

telescope OTF will be removed. Therefore in order to obtain realistic PSF one has to multiply the result of 

the method again by the telescope OTF, preferably one which includes also static errors of the optics. 

Some practical issues related to this process are discussed in Section 4.1. 

Naturally, from the statistical moments of the AO speckle transfer function it is not possible to derive its 

mean value. The second transformation that cancels out the static object is Fourier skewness [3]: 
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The transformation amounts to computing the third standardized moment of the image power spectra, 

separately for each frequency. If the object does not change during the observations then it will cancel out 

from Equation (4). 

Equations (3) and (4) involve many higher-order moments of
2

)(u


H . In order to arrive at a tractable 

formulation of the problem we must express these moments using as few parameters as possible. Although 

in general, the AO OTF is modeled with many variables corresponding to the parameters of the turbulence 

and the AO system [4-6], here we use a much simpler model. We start with the realization that the OTF is 

a speckle [2]: 
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where  ,  are the pupil-plane coordinates,   is the average wavelength of the observations, z is the 

distance from the exit pupil to the image plane, N is the number of OTF cells in the area of overlap [2] and 

 ’s are the phases – identically distributed random variables.

Note that because phases are random the OTF also has to be random, even for long exposures. Given this 

realization, one can write moments of 
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Looking at Equation (6) we see that we obtained two equations with two unknowns: the modulation 

transfer function H and the number of OTF cells N. One can now proceed to calculate modulation 

transfer function for any object being imaged. Beforehand, one last simplification in Equation (6) is used: 

           1,),(exp),(exp11
1 22

 NuzuzuDzuzuDN
N

u YXYX


HH       (7) 

where  .D is the structure function of the AO residual phase. This approximation is only valid for AO-

compensated imaging. 

To summarize, the new approach to AO PSF reconstruction involves the recording of several exposures of 

the same object, computing contrast and skewness of the power spectra of the data, obtaining the AO MTF 

from Equations (6) and (7) and Fourier-transforming it to derive the average PSF of the observations. As 

mentioned before, unfortunately the OTF phase information is lost in the process. 

3.2 Marginal blind deconvolution for satellite identification 

Blind deconvolution, both in the astronomical context and for satellite identification, is usually performed 

in a joint fashion, i.e., object and PSF are estimated together alternating the minimization of a certain cost 

function between one and the other. However, it is now well known that this often produces a solution that 

is degenerate and, when it works, it is thanks to some constraints and prior information about the PSF 

and/or the object, such as positivity, which help algorithms converge to a reasonable solution. 

In a nutshell, joint blind deconvolution consists in maximizing the joint probability p(i,o,h), where i is the 

image or data, and o and h are the unknown object and PSF to be recovered. If the PSF is considered a 

linear combination of a set of modes {hj}j=1…J, i.e., h =  ∑ 𝛼𝑗hj
𝐽
𝑗=1  , where the set of {α} are the

coefficients that parameterize the PSF, then the joint probability to be maximized would be p(i,o,α). This 

change of parameter (from h to α) allows us to reduce the number of unknowns from the number of pixels 

on the PSF support to a few coefficients. If the modes are also PSFs then the set of coefficients is 

normalized to 1 (∑ 𝛼𝑗 = 1𝐽
𝑗=1 ) and each of them is positive (𝛼𝑗 > 0).

In the case where the noise is assumed stationary white Gaussian, and a Gaussian prior distribution with 

mean value 𝒐𝒎 is also assumed for the object, then the joint criterion to be minimized 𝐽𝑗(oint)𝑀𝐴𝑃, which is

the opposite of the logarithm of the joint probability p(i,o,α), adopts the following expression [9]: 

𝐽𝑗𝑀𝐴𝑃(𝒐, 𝜶) =
1

2
∑

|𝑰(�⃗⃗� )−𝑯(�⃗⃗� )𝑶(�⃗⃗� )|2

𝑆𝑛
+

1

2
∑

|𝑶(�⃗⃗� )−𝑶𝒎(�⃗⃗� )|2

𝑺𝒐(�⃗⃗� )
�⃗⃗� �⃗⃗� + 𝐶 (8) 

where �⃗�  is a two-dimensional spatial frequency coordinate, 𝑆𝑛 and  𝑺𝒐 are, respectively, the noise and

object power spectral densities (PSD), and capital letters denote the 2-D Fourier Transform. In Equation 

(8) if we replace the object by the Wiener solution for a given set of {α} we obtain a new expression that 

does not depend explicitly on the object. 

𝐽𝑗𝑀𝐴𝑃(𝒐𝑾(𝜶), 𝜶) =
1

2
∑

1

𝑺𝒐(�⃗⃗� )

|𝑰(�⃗⃗� )−𝑯(�⃗⃗� )𝑶𝒎(�⃗⃗� )|2

|𝑯(�⃗⃗� )|2+
𝑆𝑛

𝑺𝒐(�⃗⃗� )

�⃗⃗� + 𝐶          (9) 
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It is important to notice that 𝐽𝑗𝑀𝐴𝑃(𝒐, 𝜶) and 𝐽𝑗𝑀𝐴𝑃(𝒐𝑾(𝜶), 𝜶) are equivalent, i.e., the use of the Wiener

solution does not change the shape of the criterion but only the speed at which it is minimized. From 

Equation (9) it is easy to understand why the joint solution is degenerate: if the mean object 𝒐𝒎 is

constant, and since the PSF as well as the set of coefficients {α} are normalized to 1, the numerator does 

not depend on such set of coefficients {α}. Minimizing 𝐽𝑗𝑀𝐴𝑃 is equivalent to maximizing the

denominator, i.e., choosing the PSF with the highest|𝑯(�⃗� )|, which is the sharpest PSF. Therefore the 

solution of the optimization of this joint criterion is always the sharpest PSF, whatever the true PSF may 

be! 

A possible solution to this problem is the use of the marginal estimator. Its goal is to estimate the set of 

most likely coefficients {α} on average for all possible objects by integrating the object o out of the 

problem, i.e., we integrate the joint probability on all possible objects. In other words, the joint estimation 

consists in maximizing p(i,o,α), whereas the marginal estimation consists in maximizing ∫op(i,o,α), i.e., 

maximizing the joint probability over all possible objects, which is the marginal probability p(i,α),. 

Marginalization reduces the number of unknowns providing an expression that only depends on the set of 

PSF coefficients {α}. Once these coefficients are estimated they are used to restore the object, for instance 

by Wiener filtering of the image. If we again assume a Gaussian distribution for noise, and no prior 

information for the set of {α}, then the expression of the marginal criterion is [9]: 

𝐽𝑀𝐿(𝜶) =
1

2
∑

1

𝑺𝒐(𝜈)

|𝑰(�⃗⃗� )−𝑯(�⃗⃗� )𝑶𝒎(�⃗⃗� )|2

|𝑯(�⃗⃗� )|2+
𝑆𝑛

𝑺𝒐(�⃗⃗� )

�⃗⃗� +
1

2
∑ ln (|𝑯(�⃗� )|2 +

𝑆𝑛

𝑺𝒐(�⃗⃗� )
)�⃗⃗� + 𝐶    (10) 

Equation (10) is very similar to Equation (9) however the presence of  |𝑯(�⃗� )|2 in the additional term

provides the marginal criterion with better properties with respect to the joint one, as can be seen in Figure 3. 

Fig. 3. Plot for the joint (left) and the marginal (right) estimator when the PSF is a linear combination of 

two modes related with one single coefficient of value α=0.3, i.e., 𝒉 = 𝛼 ∙ 𝒉𝒇𝒐𝒄 + (1 − 𝛼) ∙ 𝒉𝒅𝒆𝒇𝒐𝒄. The

reader can notice that the marginal criterion has its minimum at the correct value of α, whereas the joint 

criterion has its minimum for that α that pushes the PSF to be the focused one, i.e., the sharpest one.  
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From Equations (8) and (10) is easy to realize that the marginal and the joint criteria are related when the 

Wiener solution is used for the latter: 

𝐽𝑀𝐿(𝜶) = 𝐽𝑗𝑀𝐴𝑃(𝒐𝑾(𝜶), 𝜶) +
1

2
∑ ln (|𝑯(�⃗� )|2 +

𝑆𝑛

𝑺𝒐(�⃗⃗� )
)�⃗⃗� + 𝐶 (11) 

If we do not impose the Wiener solution in the joint criterion, we can create a new criterion derived from 

the marginal one, but with the explicit presence of the object: 

𝐽𝑀𝐿(𝒐, 𝜶) = 𝐽𝑗𝑀𝐴𝑃(𝒐, 𝜶) +
1

2
∑ ln (|𝑯(�⃗� )|2 +

𝑆𝑛

𝑺𝒐(�⃗⃗� )
)�⃗⃗� + 𝐶 (12) 

This new criterion can be minimized alternating between the object and the PSF coefficients, and the 

explicit presence of the object allows us to impose strong constraints over it, such as positivity, during the 

optimization. In practice, the positivity constraint behaves as an object support constraint and it is 

especially useful in the astronomical context and for satellite identification, where objects to be recovered 

usually lie over a black background. The drawback of using the non-analytical solution in 𝐽𝑗𝑀𝐴𝑃(𝒐, 𝜶)

instead of the Wiener one is a decrease in the speed of convergence, since the minimization is again 

performed alternately between the object and the PSF. 

Then, the final expression for the new marginal criterion with positivity on the object is: 

𝐽𝑀𝐿(𝒐, 𝜶)|s.t.  𝒐>0 =
1

2
∑

|𝑰(�⃗⃗� )−𝑯(�⃗⃗� )𝑶(�⃗⃗� )|2

𝑆𝑛
+

1

2
∑

|𝑶(�⃗⃗� )−𝑶𝒎(�⃗⃗� )|2

𝑺𝒐(�⃗⃗� )
�⃗⃗� �⃗⃗� +

1

2
∑ ln (|𝑯(�⃗� )|2 +

𝑆𝑛

𝑺𝒐(�⃗⃗� )
)�⃗⃗� + 𝐶     (13) 

Where the first term in Equation (13) is the data fidelity term when stationary white Gaussian noise is 

considered, the second term is a Gaussian prior distribution for the object, with an explicit presence of it, 

and the third term is due to the marginalization. 

Finally, the marginal criterion, either with or without positivity, needs the object and noise PSDs 𝑺𝒐(�⃗� )

and 𝑆𝑛. Fortunately, both can be estimated together with the PSF coefficients in an automatic manner

during the minimization. In order to reduce the number of new parameters to estimate, a simple model for 

the object PSD was chosen, e.g., 𝑺𝒐 =
𝑘

1+(
�⃗⃗� 

�⃗⃗� 0
)
𝑝. This model has been previously used with success in both 

the astronomical context and in ground-based imaging of satellites [10], and it only adds 3 new parameters 

{k,�⃗� 0,p} together with the noise PSD, which is constant since we are assuming white noise. 

4. Results and Discussion

4.1 PSF reconstruction applied to simulated and real data 

In order to test the PSF reconstruction method described in Section 3.1 we first performed tests on images 

where the ground-truth average PSF was known with a high degree of accuracy: a large set of AO PSFs 

with high signal-to-noise ratio. A sequence of 4000 short exposure images (texp = 22 ms) of a single bright 

star taken with the 3-m Shane Telescope at the Lick Observatory was used. Images were taken in K-band 

(2.2 µm) with AO (7×7 actuators on the deformable mirror) switched on. The resulting Strehl ratio was 

53%. Power spectra were computed for each image and subsequently contrast and skewness values of 

each frequency component were computed, i.e. statistical quantities were averaged over time.  
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As mentioned in Section 3.1, the proposed operations on the data remove all static components of the 

images, including the ones that must be modelled accurately to capture image degradation. While it is 

straightforward to re-introduce the OTF of the telescope with an arbitrarily shaped pupil back into the 

result of the method, it is not that straightforward to recover the information about the static aberrations 

that gets lost in the process. This is an issue common to all PSF reconstruction approaches [6]. Here we 

use a PSF obtained from fiber measurements with the telescope dome closed, i.e. a PSF only affected by 

static optical aberrations. This PSF is convolved with the AO-residual PSF, or alternatively their 

respective OTFs are multiplied. 

The azimuthally-averaged results of applying the described method are shown in the left panel of Figure 4. 

In the right panel we show the corresponding images of PSFs. These first results are very encouraging. 

The true and estimated MTFs overlap and structure of the PSF is well represented (note the AO correction 

zone, roughly 14 pixels in size, in panel c). The results are more than satisfactory given that the fiber PSF 

was taken around two years after the first observations. 

Fig. 4. Illustration of the method’s performance. Left: Black line: ground truth, i.e. the MTF 

corresponding to the observations. Green diamonds: estimated MTF of the turbulence AO-residuals 

only. Blue triangles: estimated AO MTF (green diamonds) multiplied by the perfect, diffraction-limited 

MTF. Red squares: AO MTF multiplied by the MTF containing the telescope and static error terms 

(taken from a fiber PSF). Right: (a) ground truth – in this case real PSF, (b) fiber PSF (no turbulence, 

only static errors), (c) result of PSF reconstruction after inclusion of the perfect, diffraction-limited 

MTF, (d) result of PSF reconstruction after inclusion of the information from the fiber PSF. 

Given these very encouraging results, we proceeded to tackle a much more challenging but also much 

more realistic scenario of an extended object which changes throughout the observations. Data was kindly 

provided by AFRL staff involved in this project. The set comprises 100 short exposures (texp = 15 ms) of a 

defunct US remote-sensing satellite Seasat taken with the 3.5-m telescope at the Starfire Optical Range, 

New Mexico. Observations were carried out in the laser-guide star AO mode, with 24×24 actuators on the 

deformable mirror. Wavelength of the observations was 0.8 µm. It is estimated that the Strehl ratio of the 

observations is in the range 10-30 %. Figure 5 shows some frames from the sequence. 
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Fig. 5. Example frames from the Seasat sequence. Note the appearance and disappearance of glints, 

change in aspect and local illumination of the satellite and the rotation with respect to the observer. 

There are two challenging aspects associated with the application of the described PSF reconstruction 

method on this data. Firstly, the object is rapidly changing: the satellite is rotating, tumbling, changing 

aspect, glinting, etc. Secondly, in contrast to celestial objects, the satellite’s overhead movement is very 

fast and the level of AO correction changes throughout the sequence. In order to obtain meaningful PSFs, 

the sequence was therefore divided into subsequences. This was a trade-off study: for shorter 

subsequences the object is more constant but PSF estimation is less accurate because of small samples. 

Longer subsequences have better signal-to-noise ratio on the estimators but the variability of the object 

leaks through Equations (3) and (4). After a trade-off study a subsequence length of 25 frames was found 

optimal for these observations. Figure 6 shows input image centered in the middle of one such 

subsequence, the reconstructed PSF, as well as the results of various deconvolution algorithms which were 

supplied with this PSF. The algorithms did not update the PSF; they simply used it as it was (non-blind 

mode). The improvement in image quality with regard to the original data shows that the reconstructed 

PSF is useful. Naturally, a more advanced deconvolution algorithm could update this first-guess PSF 

(“myopic” mode) and offset the errors which arise in the PSF reconstruction part due to e.g. changes in the 

object or estimation noise. 

 

Fig. 6. Left: input data whereby three short-exposure frames were summed to increase the signal-to-

noise ratio. Second from left: reconstructed PSF. Center: input data deconvolved with the reconstructed 

PSF and the Richardson-Lucy algorithm (R-L).  Second from right: deconvolution result with the 

AWMLE algorithm [11]. Far right: deconvolution with the total variation regularization. 
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How can this new method be used to tackle the problem of anisoplanatic deconvolution? In the third year 

of the project it will be combined with the image decomposition approach developed in the first year: we 

studied ways of optimally describing an anisoplanatic image in terms of the principal components of the 

spatially-varying PSF. Now we have a way to find the local PSFs. Rewriting Equation (1) for the 

anisoplanatic case we have: 

)(),()()( xxvvx


nhoi                                (14) 

This time we have deliberately included noise )(x


n  in the equation. The symbols 𝑥  and 𝑣  are 2-D vectors 

denoting image-, and object-space coordinates, respectively. Note that the PSF is assumed to change with 

𝑣  and 𝑥 . We assume that the set of reconstructed PSFs can be decomposed into J principal components 

jh via singular value decomposition: 
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Then Equation (14) becomes: 
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The deconvolution process would then involve inverting Equation (16), possibly under some 

regularization, in order to obtain the object )(x


o . Because in practice the PSFs are most probably only 

going to be recoverable at a limited number of locations, the coefficients jα are going to be sparse. Some 

interpolation would have to be employed in order to obtain a map of jα covering the whole object. A 

regularized inversion of Equation (16) would then allow to offset the three sources of error: PSF 

reconstruction error, coefficient spatial interpolation error and the influence of noise. 

4.2 Marginal blind deconvolution applied to simulated data  

For testing of the marginal criterion on images of satellites, a set of 6 AO long-exposure PSFs were 

simulated analytically using the PAOLA package [12]. The simulations were carried out for the 3.5-m 

Starfire Optical Range telescope located at a site of rather bad seeing in New Mexico. A common value of 

1.2’’ for seeing was adopted (the seeing angle is defined as the full-width-at-half-maximum of the long-

exposure PSF taken through turbulence at 500 nm wavelength through an arbitrarily large telescope). With 

Nyquist-sampled PSFs (two pixels per 𝜆/𝐷) a 256 × 256 pixel field of view (FOV) covers 7.5’’. The 

magnitude of the guide star (GS) was set to 10 in the visible, the overall transmission from GS to detector 

was set to 15%. The zenith angle was set to 30˚. The wavelength of the observations was set to 1 µm. The 

AO system has many parameters but most of them are outside the scope and interest of this report. The 

most important parameter is the density of actuators on the deformable mirror and simulations followed 

the current design of the SOR AO system with 24 × 24 actuators. The other parameters were either taken 

from SOR AO design documents [13] or optimized to obtain the highest Strehl ratio on axis. Moreover, 

simulated PSFs were obtained with two real turbulence profiles which had been obtained in the course of 

site testing in the context of the European Extremely Large Telescope project [14]. One profile has strong 
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ground-level turbulence and produces little anisoplanatism while the contrary is true for the second 

profile. 

 

Fig. 7. Simulated set of PSFs in anisoplanatic conditions for two different atmospheric profiles (rows) 

and three different positions (columns) 

In the simulations, firstly a GS image was generated and put in the top right corner of the FOV. Then, a 

loop over positions generated a PSF for the desired locations in the FOV according to its field angle and 

orientation with respect to the GS. These PSFs were then stored for subsequent convolution/deconvolution 

and are shown in Figure 7. As test object we used the schematic image of the Operationally Responsive 

Space-1 satellite (ORS) depicted in Figure 9. A test image was produced by convolving the test object 

with one of the six PSFs. Subsequently, shot noise and read out noise (1e
-
 RMS) were added to produce 

the final images.  Two different levels of noise were considered assuming different mean fluxes for the 

object, equal to 10
3
 and 10

4
 photons per pixel.  

Finally, the marginal criterion, with and without positivity on the object, was tested over these images to 

obtain the coefficients that synthesized the PSF, to assess how well we can recover the true PSF out of the 

set of six simulated ones. The final goal is to recover a good PSF that can be used with whatever non-blind 

deconvolution algorithm we wish to use. Here, we have used the natural output of each approach, i.e., for 

the marginal criterion with positivity an explicit object is obtained at each iteration, hence, in Figure 9 we 

show the object at the last iteration. For the marginal criterion with no positivity the object is computed 

implicitly during the minimization process by means of the Wiener solution, i.e., there is no object at the 

last iteration. Therefore, in order to produce the final result we used the recovered PSF and object PSD 

together with a Wiener filter. 

Table 1 and Figures 8 and 9 show the results of the marginal estimator when the image was simulated for 

the PSF number 3 (top row, third column) in Figure 7. This is a representative result for the rest of the 

tested PSFs. Table 1 shows that the marginal criterion is a powerful tool to estimate the correct PSF for 

long exposure AO observations, from a single image. The coefficient corresponding to the PSF which 

created the image was correctly identified by the estimator, with more robustness when the positivity on 

the object was applied. Figure 8 shows the recovered PSFs and Figure 9 the final reconstructed object with 

the corresponding PSF, either with or without positivity.  
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Table 1. Results of the marginal estimator applied to test data created with the PSF in the top row and third column in Figure 7. 

The input data is shown in Figure 9 

  α1 α2 α3 α4 α5 α6 

 True values 0 0 1 0 0 0 

High SNR 

10
4
 ph/pixel 

Marginal + 

Positivity 

0 0 1 0 0 0 

High SNR 

10
4
 ph/pixel 

Marginal 0 0.0920 0.9079 0 0 0 

Low SNR 

10
3
 ph/pixel 

Marginal + 

Positivity 

0 0 1 0 0 0 

Low SNR 

10
3
 ph/pixel 

Marginal 0 0.0211 0.7072 0 0.2717 0 

 

 

 

Fig. 8. Top row: PSF estimation with the marginal criterion. Bottom row: PSF estimation with the 

marginal criterion and positivity on the object. Leftmost panels: ground-truth PSFs. Middle panels: 

estimated PSFs. Rightmost panels: difference between the real PSF and the estimated one (log scale). 

Object mean flux equals 103 photons per pixel. 
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Fig. 9. Top row: results at high SNR, object mean flux equal to 104 photons/pixel. Bottom row: results at 

low SNR, object mean flux equal to 103 photons/pixel. First column: ground truth object. Second 

column: simulated image after convolution with AO long-exposure PSF in Figure 7 (top row, third 

column). Photon noise plus read out noise (1e- RMS) were consecutively added. Third column: results 

from the marginal criterion with positivity on the object. An explicit object is obtained at each iteration; 

these results show the restored object at the last iteration. Fourth column: results from the marginal 

criterion with no positivity on the object. An implicit object is computed using the Wiener solution for a 

given PSF, hence, the final object is obtained using the final PSF and the Wiener filter. 

5. Conclusions 

In the second year of the project we have introduced a novel way of extracting a PSF from sequence of 

images of arbitrary objects. The method is applicable to astronomical imaging with AO and to imaging 

with small apertures and/or long wavelengths. Especially interesting will be the application of the new 

approach to estimation of spatially-varying PSF in single-conjugate AO imaging. Based on experience 

with real data from Starfire Optical Range we posit that the method will work with less than 100 images. 

There is also nothing preventing the use of the method with long exposures: the only thing that will 

change will be then the number of random phasors N which will correspondingly increase. Practical issue 

might arise in that both contrast and skewness diminish towards zero when N increases (see Equation (6)). 

This might lead to degeneracy of the solution and theoretical work is already underway to find more 

accurate models for speckle statistics [15]. This and other issues, especially pertaining to anisoplanatic 

deconvolution based on singular value decomposition of the reconstructed local PSFs, will be explored in 

Year 3 of the project. 

We also have extended the marginal blind deconvolution from the context of retinal imaging towards the 

identification of satellites observed with single-conjugate AO systems. The marginal criterion has been 

modified to include constraints on the object, such as positivity, in order to make the PSF estimation more 

robust in the presence of noise [16]. This approach can be extended to the anisoplanatic case by its 

application to different positions in the FOV as an essential building block of a global, shift-variant image 
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restoration method. Additionally, we plan to create a large dictionary of PSFs, describing different 

atmospheric conditions, from which marginal blind deconvolution will extract the correct linear 

combination of PSF coefficients at each position. In order to help the convergence of the algorithm 

different constraints over the PSF can be applied, such as sparsity on the coefficients through an l1 

regularization in order to force the real PSF to a be a linear combination of only a few of the PSFs within 

the dictionary, and/or constraining the shape and orientation of the PSF to correspond with its position in 

the FOV. 

Main research thrust in Year 3 will be devoted to development of a novel kind of simulation tool which 

will allow for rapid generation of anisoplanatic image sequences for three scenarios: uncompensated, 

horizontal-path imaging with very small isoplanatic angles, single-conjugate AO-compensated vertical 

imaging, and air-to-ground, “looking-down”, slant-path scenario. Some work on the theory behind such a 

simulation has been carried out in Year 2 of the project [17]. 

The methods of PSF estimation and anisoplanatic deconvolution developed in the course of the project 

until now would then be tested on these simulated sequences. 
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7. List of Symbols, Abbreviations, and Acronyms 

AO – adaptive optics 

AMOS – Air Force Maui Optical and Supercomputing 

AWMLE – Adaptive Wavelet Maximum Likelihood Estimator 

FOV – field of view 

GS – guide star 

MTF – modulation transfer function 

ORS – Operationally Responsive Space-1 satellite 

OTF – optical transfer function 

PSF – point-spread function 

R-L – Richardson-Lucy algorithm 

RMS – root mean square (standard deviation) 

SNR – signal-to-noise ratio 

TV – total variation constraint 
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